Effect of electroneutral luminal and basolateral lactate transport on intracellular pH in salamander proximal tubules

نویسندگان

  • A W Siebens
  • W F Boron
چکیده

We used microelectrodes to examine the effects of organic substrates, particularly lactate (Lac-), on the intracellular pH (pHi) and basolateral membrane potential (Vbl) in isolated, perfused proximal tubules of the tiger salamander. Exposure of the luminal and basolateral membranes to 3.6 mM Lac- caused pHi to increase by approximately 0.2, opposite to the decrease expected from nonionic diffusion of lactic acid (HLac) into the cell. Addition of Lac- to only the lumen also caused alkalinization, but only if Na+ was present. This alkalinization was not accompanied by immediate Vbl changes, which suggests that it involves luminal, electroneutral Na/Lac cotransport. Addition of Lac- to only the basolateral solution caused pHi to decrease by approximately 0.08. The initial rate of this acidification was a saturable function of [Lac-], was not affected by removal of Na+, and was reversibly reduced by alpha-cyano-4-hydroxycinnamate (CHC). Thus, the pHi decrease induced by basolateral Lac- appears to be due to the basolateral entry of H+ and Lac-, mediated by an H/Lac cotransporter (or a Lac-base exchanger). Our data suggest that this transporter is electroneutral and is not present at the luminal membrane. A key question is how the addition of Lac- to the lumen increases pHi. We found that inhibition of basolateral H/Lac cotransport by basolateral CHC reduced the initial rate of pHi increase caused by luminal Lac-. On the other hand, luminal CHC had no effect on the luminal Lac(-)-induced alkalinization. These data suggest that when Lac- is present in the lumen, it enters the cell from the lumen via electroneutral Na/Lac cotransport and then exists with H+ across the basolateral membrane via electroneutral H/Lac cotransport. The net effect is transepithelial Lac- reabsorption, basolateral acid extrusion, and intracellular alkalinization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular pH regulation in the renal proximal tubule of the salamander. Na-H exchange

Using pH-sensitive microelectrodes to measure intracellular pH (pHi) in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum, we have found that when cells are acid-loaded by pretreatment with NH+4 in a nominally HCO3--free Ringer, pHi spontaneously recovers with an exponential time course. This pHi recovery, which is indicative of active (i.e., uphill) transport, is b...

متن کامل

KCl co-transport across the basolateral membrane of rabbit renal proximal straight tubules.

Mammalian renal proximal tubules reabsorb large amounts of chloride. Mechanisms of the transcellular chloride transport are poorly understood. To determine whether KCl co-transport exists in the basolateral membrane of mammalian renal proximal tubule, isolated rabbit proximal straight tubules (S2 segment) were perfused in vitro, and intracellular activities of potassium and chloride (aKi, aCli)...

متن کامل

Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport

We have used pH-, Na-, and Cl-sensitive microelectrodes to study basolateral HCO3- transport in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum. In one series of experiments, we lowered basolateral pH (pHb) from 7.5 to 6.8 by reducing [HCO3-]b from 10 to 2 mM at a constant pCO2. This reduction of pHb and [HCO3-]b causes a large (approximately 0.35), rapid fall in ...

متن کامل

Cell pH in the rat proximal convoluted tubule. Regulation by luminal and peritubular pH and sodium concentration.

To examine the relative roles of apical and basolateral membrane transport mechanisms in the regulation of cell pH in the proximal convoluted tubule, cell pH was measured in the in vivo microperfused rat tubule using fluorescence. Decreasing luminal pH by 0.7 pH units caused cell pH to decrease by 0.08 pH units, whereas a similar decrease in peritubular pH caused cell pH to decrease by 0.32 pH ...

متن کامل

Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process

In order to examine the mechanism of basolateral membrane H+/OH-/HCO-3 transport, a method was developed for the measurement of cell pH in the vivo doubly microperfused rat proximal convoluted tubule. A pH-sensitive fluorescein derivative, (2',7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein, was loaded into cells and relative changes in fluorescence at two excitation wavelengths were followed. C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 90  شماره 

صفحات  -

تاریخ انتشار 1987